Robust Graph-Based Multi-View Clustering

نویسندگان

چکیده

Graph-based multi-view clustering (G-MVC) constructs a graphical representation of each view and then fuses them to unified graph for clustering. Though demonstrating promising performance in various applications, we observe that their formulations are usually non-convex, leading local optimum. In this paper, propose novel MVC algorithm termed robust graph-based (RG-MVC) address issue. particular, define min-max formulation learning rewrite it as convex differentiable objective function whose convexity differentiability carefully proved. Thus, can efficiently solve the resultant problem using reduced gradient descent algorithm, corresponding solution is guaranteed be globally optimal. As consequence, although our free hyper-parameters, has shown good robustness against noisy views. Extensive experiments on benchmark datasets verify superiority proposed method compared state-of-the-art algorithms. Our codes appendix available at https://github.com/wx-liang/RG-MVC.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view Clustering with Adaptively Learned Graph

Multi-view clustering, which aims to improve the clustering performance by exploring the data’s multiple representations, has become an important research direction. Graph based methods have been widely studied and achieve promising performance for multi-view clustering. However, most existing multi-view graph based methods perform clustering on the fixed input graphs, and the results are depen...

متن کامل

Robust Localized Multi-view Subspace Clustering

In multi-view clustering, different views may have different confidence levels when learning a consensus representation. Existing methods usually address this by assigning distinctive weights to different views. However, due to noisy nature of realworld applications, the confidence levels of samples in the same viewmay also vary. Thus considering a unified weight for a view may lead to suboptim...

متن کامل

Robust Synchronization-Based Graph Clustering

Complex graph data now arises in various fields like social networks, protein-protein interaction networks, ecosystems, etc. To reveal the underlying patterns in graphs, an important task is to partition them into several meaningful clusters. The question is: how can we find the natural partitions of a complex graph which truly reflect the intrinsic patterns? In this paper, we propose RSGC, a n...

متن کامل

Large-Scale Multi-View Spectral Clustering via Bipartite Graph

In this paper, we address the problem of large-scale multi-view spectral clustering. In many real-world applications, data can be represented in various heterogeneous features or views. Different views often provide different aspects of information that are complementary to each other. Several previous methods of clustering have demonstrated that better accuracy can be achieved using integrated...

متن کامل

Partial Multi-View Clustering

Real data are often with multiple modalities or coming from multiple channels, while multi-view clustering provides a natural formulation for generating clusters from such data. Previous studies assumed that each example appears in all views, or at least there is one view containing all examples. In real tasks, however, it is often the case that every view suffers from the missing of some data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i7.20710